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Equations and Inequalities

w18 _qgp_32 _q4

Showing all necessary working, solve the equation

. =4,
"+ 1
giving your answer correct to 3 decimal places. [5]
s19_qp_33_q4
_ _ [ +e™*
The equation of a curve is y = 1T forx = 0.
. dy :
{i} Show that E is always negative. [3]

(if) The gradient of the curve is equal to —1 when x = a. Show that a satisfies the equation

e’ — 4e” + 1 = 0. Hence find the exact value of a. [4]
s19_qp_33_q6
y
A

ff\ 0 b

The diagram shows the curve y = x* — 2x° — 7x — 6. The curve intersects the x-axis at the points (a, 0)
and (b, 0), where a < b. It is given that b is an integer.

{i) Find the value of b. [1]
(ii) Hence show that a satisfies the equation a = —_—i{i +at+ a3}. [4]

(iii) Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal
places. Give the result of each iteration to 5 decimal places. [3]
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wi9_qp_33_q3
2 —x

Showing all necessary working, solve the equation 33 = 4. Give your answer correct to

3 decimal places. [4]
m20_qp_32_q1

(a) Sketch the graph of y = [x - 2|. [1]

{b) Solve the inequality |x — 2| < 3x - 4. [3]
s21_qp_31_¢g2

X + —X
Find the real root of the equation Tv:" = 3, giving your answer correct to 3 decimal places.
Your working should show clearly that the equation has only one real root. [3]

s21_qp_32_q3

The variables x and y satisfy the equation x = A(37™), where A is a constant.

{a) Explain why the graph of y against Inx is a straight line and state the exact value of the gradient
of the line. [3]

It is given that the line intersects the y-axis at the point where y = 1.3,

(b) Calculate the value of A, giving vour answer correct to 2 decimal places. [2]
w22_qp_33_q6

Solve the quadratic equation (1 —3i)z> — (2 + i)z + i =0, giving your answers in the form x + iy, where

x and v are real. [6]
m23_qp_32_ g4

Solve the equation

]+2i—zz + 30+ 1t =0,

giving your answers in the form x + iy, where x and vy are real. [5]
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Polynomials
wi9_qp_32_q3
The polynomial x* + 3x° + ax + b, where a and b are constants, is denoted by p(x). When p(x) is
divided by x* +x — 1 the remainder is 2x + 3. Find the values of a and b. [5]
s22 qp_31_g5

The polynomial ax® — 10x” + bx + 8, where a and b are constants, is denoted by p(x). It is given that
{x —2) is a factor of both p(x) and p'(x).

(a) Find the values of a and f. [5]
(b) When a and b have these values, factorise p(x) completely. [3]
w22 _qgp_32 g2

The polynomial 2x* — x* + a, where a is a constant, is denoted by p(x). It is given that (2x + 3) is a
factor of pix).

(a) Find the value of a. [2]
(b) When a has this value, solve the inequality p(x) < 0. [4]
m23_qp_32 g3

The polynomial 2x* + ax® + bx — 1, where a and b are constants, is denoted by p(x). When p(x) is
divided by x* = x + 1 the remainder is 3x + 2.

Find the values of @ and b. [5]

s23_qp_31_q10
The polynomial x* + 5x° 4+ 31x + 75 is denoted by p(x).

{a) Show that (x + 3) is a factor of pix). [2]
by Show thatz = -1 + 2461 is a root of plz) = 0. [3]
ic) Hence find the complex numbers z which are roots of p{zz} = [7]
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Partial Fraction and
Binomial Expansion

s18_qp_31 _q9

\
12~ +4x— 1

Letf(x) = m

{i) Express f(x) in partial fractions.

[5]
(ii) Hence obtain the expansion of f{x) in ascending powers of x, up to and including the term in x*.

[5]
s18_qgp_33 _g5

. - . 2 .3 43 .
(i) By first expanding (cos”x +sin” x)°, or otherwise, show that

. 1 - 7
cos®x+sin®x=1- ¥y sin~2x.

[4]
(if) Hence solve the equation
cos®x + sin”x = %
for 0° < x < 1807, [4]

w18 _gp_31_q9

61 +8x+ 9

Letflx)= ———.
(2 —x)(3 +2x)-

(i) Express f(x) in partial fractions. [5]

0
(ii) Hence, showing all necessary working, show that -I- flx)de=1+ % ln{;—ij. [5]
-1 =
w20 _gp_31_¢g9

8+ 50+ 1247

Letfix) = —————.
(1 —x)2+3x)"

{a) Express f{x) in partial fractions. [5]

{b) Hence obtain the expansion of f{x) in ascending powers of x, up to and including the term in x*

[5]



w20_qp_32_q9
Let f(x) = — X+ 18
(3x+2)x +4)
{a) Express fix) in partial fractions. [5]
2
{b) Hence find the exact value of | f(x)dx. [6]
0
m21_qp_32_qg6
5
Let fix) = 2 H}E;u 3 where ¢ is a positive constant.
(a) Express [(x) in partial fractions. [3]
2ex
{b) Hence show that J fx)de=In6. [4]
s22_qp_31_qg2
(a) Expand (2 - 12]_3 in ascending powers of x, up to and including the term in x*, simplifying the
coefficients. [4]
(b) 5tate the set of values of x for which the expansion is valid. [1]

w22 _qgp_31_qi0

23" + Tx+8
Let f(x) = —— 212
(1+x)(2+x)°
{a) Express fix} in partial fractions. [5]
(b) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x*.
[5]
m23_qp_32_qii
5x° 11
Let f(x) = —— "
{4+ 7)1 +x)
(a) Express f(x) in partial fractions. [5]
2
(b) Hence show that J fix)de =In54 - %n. [5]
0
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s23_qp_32_q9

27+ 17x— 17

Let fix) = m

(a) Express fix) in partial fractions.

1

(b} Hence show that | f(x)dy = %— In72.

0

[5]

[5]
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Logarithms

m18_qp_32 _qg4

The variables x and y satisfy the equation y" = Ax?, where n and A are constants. It is given that

vy =258 when x = 1.20, and v = 9.49 when x = 2.51.

(i) Explain why the graph of Iny against Inx is a straight line. [2]

(ii) Find the values of n and A, giving your answers correct to 2 decimal places. [4]
wi9_qp_32_q1

Solve the equation 5In{4 — 3*) = 6. Show all necessary working and give the answer correct to

3 decimal places. [3]
m22_qp_32_q3

Iny
A

(031, 1.21)

(1.06,091)

= |nx

o

The variables x and vy satisfy the equation x"y* = C, where n and C are constants. The graph of In y
against Inx is a straight line passing through the points (0.31, 1.21) and (1.06, 0.91), as shown in the
diagram.

Find the value of n and find the value of C correct to 2 decimal places. [5]



s22 qp_33_¢q3
(a) Show that the equation log (2x + 1) = 1 + 2log_(x — 1) can be written as a quadratic equation
in x. [3]
{b) Hence solve theequationlog, {4y +1)=1+2log,(2y— 1), giving your answer correct to 2 decimal
places. [2]
w22_qp_32_q1
. |
Solve the equation 2**~! = 5(3'~). Give your answer in the form % where @ and b are integers.
nb
[4]

/]
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Trigonometry
m18_qp_32 _¢3
(i} Using the expansions of cos(3x + x) and cos(3x = x), show that
%{uus dx + cos2x) = cos 3xcos x. [3]
in
(ii) Hence show that J | cos 3xcosxdy = %1.:‘3, [3]
HJ‘[
s18_qgp_32 _qg2
Showing all necessary working, solve the equation cot @ + cot{8 + 45°%) =2, for 0° < 8 < 180°.  [5]
mi9_qp_32_qg3
(i) Given that sin(8+ 45°) + 2 cos(8 + 60°) = 3 cos 8, find the exact value of tan 8 in a form involving
surds. You need not simplify your answer. (4]
(ii) Hence solve the equation sin(8 + 457) + 2 cos(8 + 60°) = 3 cos 6 for 0° < 8 < 360°. [2]

s19_qp_32_q10

The diagram shows the curve y = sin 3xcos x for 0 € x € 17 and its minimum point M. The shaded
region R is bounded by the curve and the v-axis.

{i) By expanding sin{3x + x) and sin{3x — x) show that

sin3xcosx = %{sin 4x + sin 2x). [3]

10
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(ii) Using the result of part (i) and showing all necessary working, find the exact area of the region R.
(4]

d y
(ifi) Using the result of part (i), express a} in terms of cos 2x and hence find the x-coordinate of M,

giving your answer correct to 2 decimal places. [5]
w19 _gp_32 g4
(i) Express (v6)sinx + cosx in the form R sin(x + o), where R > 0 and (° < o < 90°. State the exact
value of R and give @ correct to 3 decimal places. [3]
(ii) Hence solve the equation (v'6) sin 26 + cos 28 = 2, for 0° < 6 < 180°. [4]
m20_qp_32_q3
(a) By sketching a suitable pair of graphs, show that the equation secx =2 - —é_r has exactly one root
in the interval 0 € x < 7. (2]
(b) Verify by calculation that this root lies between 0.8 and 1. 2]

(c) Use the iterative formula x, | = u:{‘.ls_l( ) to determine the root correct to 2 decimal places.

Give the result of each iteration to 4 decimal places. [3]
w21_gp_31_¢g2

{a) Express 5sinx — 3cosx in the form Rsinfy — «), where R > 0and 0 = o < —én. Give the exact

value of R and give a correct to 2 decimal places. [3]

(b) Hence state the greatest and least possible values of (5 sinx — 3 cosx)~. [2]
w21_qgp_32 g8

{a) By first expanding {a::a::u;2 0 + sin” E}z, show that
cos* 8 +sin*0 = 1 — Lsin® 26, [3]
{b) Hence solve the equation
cos” @ +sin* @ = %,

for 0° < @ < 180°. [4]

w21_qp_33_q6
(a) By first expanding cos(x — 60%), show that the expression

2cos(x —60%) +cosx

can be written in the form R cos(x — a), where R = 0 and (0° < @ < 90°. Give the exact value of R
and the value of @ correct to 2 decimal places. [5]

11
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(b) Hence find the value of x in the interval 0° < x < 360° for which 2 cos(x — 60°) + cos x takes its

least possible value. [2]
m22_qp_32_q7

(a) By sketching a suitable pair of graphs, show that the equation 4 — x* = sec %x has exactly one

root in the interval 0 £ x < . [2]

(b} WVerify by calculation that this root lies between 1 and 2. (2]

(¢) Use the iterative formula x, , = 1|||'4 - §eC %_rn to determine the root correct to 2 decimal places.

Give the result of each iteration to 4 decimal places. [3]
s23_qp_32_qg4
Solve the equation 2 cos x — cos %.:: =1for0<x<2n [5]

12
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Differentiation

s18_qgp_31 _qg3
e.'i.t
A curve has equation v = - Find the x-coordinates of the stationary points of the curve in the
tanSx
interval 0 < x < 7. Give your answers correct to 3 decimal places. [6]
s18_qgp_33 _qg8

. . 3 3 . .
The equation of a curve is 2x° —y* — 3xy” = 2a”, where a is a non-zero constant.

dv ~ 2 2
(i) Show that = = =X —2 [4]

dv 4+ 2xy

(ii) Find the coordinates of the two points on the curve at which the tangent is parallel to the v-axis.

[5]
w18 _gp_31 _qg4
The parametric equations of a curve are
x=2sin8+sin208, v=2cos0+cos20,
where 0 < 8 < .
] ; . dy |
{i) Obtain an expression for E in terms of &. [3]

(if) Hence find the exact coordinates of the point on the curve at which the tangent is parallel to the
V-axis. [4]

m19_qp_32 g5

The variables x and y satisfy the relation siny = tan x, where —%fr <y =< %R’. Show that

P )
dx  cosxq/(cos2x)’ }
w19 _gp_31_¢gb5
The curve with equation y = e ~* In(x — 1) has a stationary point when x = p.
1
(i} Show that p satisfies the equation x = 1 + exp(m). where exp(x) denotes e*. [3]

13
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(ii) Verify by calculation that p lies between 2.2 and 2.6. [2]

(iii) Use an iterative formula based on the equation in part (i) to determine p correct to 2 decimal

places. Give the result of each iteration to 4 decimal places. [3]
wi9_qp_32_qg5

The equation of a curve is 2x>y — xy" = @, where a is a positive constant. Show that there is only one
point on the curve at which the tangent is parallel to the x-axis and find the v-coordinate of this point.

[7]
w20_qgp_32 g5
y
P
0 =
The diagram shows the curve with parametric equations
r=tan@, y= cos® 8,
1 1l

for -3 < a4 < ST

{a) Show that the gradient of the curve at the point with parameter @ is —2 sin 8cos” 8. [3]

The gradient of the curve has its maximum value at the point P.

(b} Find the exact value of the x-coordinate of P. [4]

m21_qp_32_q10

et

Ol L
The diagram shows the curve y = sin 2xcos’x for0 € x < %:ﬂ:, and its maximum point M.

(a) Using the substitution « = sinx, find the exact area of the region bounded by the curve and the
X-axis. [5]

14

MOJZA



MOJZA
(b} Find the exact x-coordinate of M. [6]
s21_qp_33_q3
The parametric equations of a curve are
x=1t+In(t+2), v=(t—1)e .
where > -2,
dy . . e
{a) Express P in terms of 7, simplifying your answer. [5]
(b) Find the exact y-coordinate of the stationary point of the curve. [2]

w21_qp_32_q1i1
The equation of a curve is y = ytanx, for0 £ x < %n_

{a) Express ﬂ in terms of tanx, and verify that d—} =1 whenx= :lt'n:_ [4]
dx dx

dy .
The value of a is also 1 at another point on the curve where x = a, as shown in the diagram.

= X
(o
(b) Show that# +  +3r— 1 = 0, where ¢ = tana. [4]
(c) Use the iterative formula
R - 3
a =tan (j{l —tan“a —tan u”}}

to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
[3]

15
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s22 qp_31_q8

The equation of a curve is x¥ + 7 + 2ev + 8= 0.
dv | i
(a) Express d_ in terms of v and y. [<]
"

The tangent to the curve at the point where x = () and the tangent at the point where v = () intersect at
the acute angle .

(b) Find the exact value of tan o, [5]

s22 _qp_32_qg4

The equation of a curve is y = cos’x«/'sinx. It is given that the curve has one stationary point in the
interval 0 < x < Jz-r:_

Find the x-coordinate of this stationary point, giving vour answer correct to 3 significant figures. [6]

m22_qp_32_q4

The parametric equations of a curve are

x=1-cos8, }-‘:Cusﬂ—ﬁcosza

dy :
Show that = = ~2sin’(186). (5]

16



Integration

m18_qp_32 _qi
Use the trapezium rule with three intervals to estimate the value of

tn
J- V(1 —tanx) dx,
0

giving your answer correct to 3 decimal places.
s18_qp_31 _g5

Let ] = ‘E\/(I:)m.

i
(i) Using the substitution x = cos” @, show that [ = ﬂ 2 cos” Bda.
|<_.‘T

(ii} Hence find the exact value of [.

wi8_qp_31 _q7

& i

MOJZA

[4]

[4]

The diagram shows the curve y = Ssin‘xcos’xfor0 € x < %:r. and its maximum point M. The shaded

region R is bounded by the curve and the x-axis.

{i) Find the x-coordinate of M, giving your answer correct to 3 decimal places.

(ii) Using the substitution u = sinx and showing all necessary working, find the exact area of R.

wi8_qp_32 _q3

|
(i) Find .[Lf dx.
X

[5]

[4]

[3]

17
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2
. Inx l
(ii) Hence show that x—3 dxy = EI::‘S —In4). [2]
1

mi19_qp_32_q10

¥
[ y
-\

7] 1
2)'['

The diagram shows the curve y = sinxyf(cosx) for0 € x € %:rc, and its maximum point M.

(i) Using the substitution i = cos x, find by integration the exact area of the shaded region bounded
by the curve and the x-axis. [6]

(ii) Showing all your working. find the x-coordinate of M, giving your answer correct to 3 decimal

places. [6]
s19_qp_33_¢g2
i )
Show that J +% cos 2xdx = 35(n” - 8). [5]
0 i

w19 _gp_33_qi0

e

] T
The diagram shows the graph of y = ¥ sin’ x for 0 € x < 7, and its maximum point M. The shaded
region & is bounded by the curve and the v-axis.

(i) Find the x-coordinate of M. Show all necessary working and give your answer correct to 2 decimal

places. [5]

(ii) By first using the substitution i = cosx, find the exact value of the area of R. [7]

18



wi9_qp_33_qg8

y

A .
1
:
1
1
I
I
I
I
!
1
1
1
I
1
1
1
1
1
1
i
1
S

(] Lo
The diagram shows the graph of y = secx for0 = x < %m.
1.2
(i) Use the trapezium rule with 2 intervals to estimate the value of secydy, giving your answer
0
correct to 2 decimal places. [3]

(ii) Explain, with reference to the diagram, whether the trapezium rule gives an overestimate or an
underestimate of the true value of the integral in part (i). [1]

(iii) P is the point on the part of the curve y = sec x for 0 < x < Lx at which the gradient is 2. By first

2
differentiating prpel find the x-coordinate of P, giving your answer correct to 3 decimal places.
5
[6]
s21_qp_32_qg4
Using integration by parts, find the exact value of J-_ tan'l(%x} dx. [5]
]
w21_qp_31_qg8
i
1
The constant a is such that J % dy = 6.
X
1
1
{a) Show that a = exp (—_ + 2)_ [5]
Ja
[exp(x) is an alternative notation for e*.]
(b) Verify by calculation that « lies between 9 and 11. [2]

(c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

19
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s22 qp_31_q6
g
Letl = — dx.
o (94 x? )
4n
(a) Using the substitution x = 3 tan 8, show that [ = I cos” 0d8. [4]
]
(b} Hence find the exact value of [. [4]
w22 _qp_31_q7
The equation of a curve is y = x,, Lforsx < %m:_ At the point where x = a, the tangent to the

. COS™X
curve has gradient equal to 12,

3 cos a + 2asi
ia) Slmwthata:ms'l(ﬂW} [3]

(b) Verify by calculation that a lies between 0.9 and 1. [2]

{c) Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal

places. Give the result of each iteration to 4 decimal places. [3]
w22 _qgp_32 g8
¥
A

7 a\ B

The diagram shows part of the curve v = sin yx. This part of the curve intersects the x-axis at the point
where x = a.

(a) State the exact value of a. [1]

(b) Using the substitution & = X, find the exact area of the shaded region in the first quadrant
bounded by this part of the curve and the x-axis. [7]

20
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s23_qp_31_q9

i
The constant a is such that j xe Pdx = é
0

(a) Show that a = $In(4a +2). [5]

(b) Werify by calculation that a lies between 0.5 and 1. [2]

{c) Use an iterative formula based on the equation in (a) to determine a correct to 2 decimal places.
Give the result of each iteration to 4 decimal places. [3]

s23_qp_32_qi0

=

/ 0 =

The diagram shows the curve v = (x + 5)4/3 — 2x and its maximum point M.

(a) Find the exact coordinates of M. [5]

(b) Using the substitution & = 3 — 2x, find by integration the area of the shaded region bounded by
the curve and the y-axis. Give yvour answer in the form ay13, where a is a rational number. [5]

21



Iteration

m18_qp_32 _q7

(i) By sketching suitable graphs, show that the equation e** = 6 + e has exactly one real root. [2]

(ii) Verify by calculation that this root lies between 0.5 and 1.

(2]
(iii) Show that if a sequence of values given by the iterative formula
= l 'IJI
X, = 3In(1 +6e'x)
converges, then it converges to the root of the equation in part (i). [2]

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each
iteration to 5 decimal places. [3]

s18_qgp_32 _q6

& rad

The diagram shows a triangle ABC in which AB = AC = g and angle BAC = & radians. Semicircles
are drawn outside the triangle with AB and AC as diameters. A circular arc with centre A joins B
and C. The area of the shaded segment is equal to the sum of the areas of the semicircles.

(i) Show that @ = 3 + sin 0. [3)

(ii) Verify by calculation that @ lies between 2.2 and 2.4,

(ifi) Use an iterative formula based on the equation in part (i) to determine & correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

s18_gp_31 _q3

(i) By sketching a suitable pair of graphs, show that the equation x* = 3 — x has exactly one real
root. (2]

22
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s19_qgp_31_q7

The diagram shows the curves y = 4 cos %x and y = 4;, for 0 < x = 4. When x = a, the tangents to

the curves are perpendicular.
(i) Show thata =4 - y/(2sin3a). [4]

(ii} Verify by calculation that a lies between 2 and 3. [2]

(iii) Use an iterative formula based on the equation in part (i) to determine a correct to 3 decimal
places. Give the result of each iteration to 5 decimal places. [3]

s19_qp_32 g6

]

\

Q N S —— -

4

In the diagram, A is the mid-point of the semicircle with centre @ and radius r. A circular arc with
centre A meets the semicircle at B and C. The angle (JAB is equal to x radians. The area of the shaded
region bounded by AB, AC and the arc with centre A is equal to half the area of the semicircle.

(i) Use triangle QAB to show that AB = 2rcos x. [1]

(iii) Verify by calculation that x lies between 1 and 1.5. (2]

23
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(iv) Use an iterative formula based on the equation in part (ii) to determine x correct to 3 decimal

places. Give the result of each iteration to 5 decimal places. [3]
w19 _gp_33_gb
(i} By sketching a suitable pair of graphs, show that the equation In{x + 2) = 4e™ has exactly one
real root. [2]
w20_qgp_31_gb5
1
(a) By sketching a suitable pair of graphs, show that the equation cosecx = 1 + e 2" has exactly two
roots in the interval 0 < x < . [2]
s21_qp_33_q6
(a) By sketching a suitable pair of graphs, show that the equation cot %x = | + e™ has exactly one
root in the interval 0 < x £ . [2]
s22_qp_32_qg5
(a) By sketching a suitable pair of graphs, show that the equation Inx = 3x — x* has one real root.
(2]

24
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Vectors

s18_qp_31 _q10

The point P has position vector 3i — 2j + k. The line [ has equation r = 4i + 2j + 5k + p(i + 2j + 3k).

(i) Find the length of the perpendicular from P to [, giving vour answer correct to 3 significant
figures. [5]

(i) Find the equation of the plane containing / and P, giving your answer in the form ax + by +cz =d.
[5]

s18_qp_32 _q10

Two lines ! and m have equations r = 2i— j+k +s2i+3j—k)and r =i+ 3j + 4k + (i + 2j + k)
respectively.

(i) Show that the lines are skew. [4]

A plane p is paralle] to the lines [ and m.

(ii) Find a vector that is normal to p. [3]

(ifi) Given that p is equidistant from the lines ! and m, find the equation of p. Give your answer in
the form ax + by +cz = d. [3]

s18_qgp_33 _q10

The points A and B have position vectors 2i + j + 3k and 4i + j + k respectively. The line [ has equation
r=di+6f+uli+2j-2k).

(i) Show that { does not intersect the line passing through 4 and B. [5]
The point P, with parameter 1, lies on [ and is such that angle PARB is equal to 120°,
(i) Show that 317 + 8¢ + 4 = 0. Hence find the position vector of P. [6]

s19_qp_32_q9

The points A and B have position vectors i + 2j — k and 3i + j + k respectively. The line { has equation
r=2i+j+k+pli+j+2k).

{i) Show that { does not intersect the line passing through A and B. [5]
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wi8_qp_32 _q10
The line { has equation r = 5i — 3j — k + A{i — 2j + k). The plane p has equation
(r—i—-2j).3i+j+k)=0.

The line { intersects the plane p at the point A.

{i) Find the position vector of A. [3]
(ii) Calculate the acute angle between { and p. [4]
(ifi) Find the equation of the line which lies in p and intersects [ at right angles. [4]

m20_qp_32_q8
& N F
|
|
I
I
D E | .
T
-~
-
e
KA d
rd
/ i M
0 > A

In the diagram, OABCDEFG is a cuboid in which @A = 2 units, OC = 3 units and OD = 2 units.
Unit vectors i, j and Kk are parallel to OA, OC and OD respectively. The point M on AB is such that
MB = 2AM. The midpoint of FG is V.

(a) Express the vectors OM and MN in terms of i, jand k. [3]

(b) Find a vector equation for the line through M and V. 2]

w20_qgp_31_qi1
Two lines have equations r =i+ 2j+ k+ Lai+2j—k)and r = 2i + j — k + p{2i — j + k), where a is a
constant.

(a) Given that the two lines intersect, find the value of a and the position vector of the point of
intersection. [5]

{b) Given instead that the acute angle between the directions of the two lines is cos™! {é] find the
two possible values of a. [6]
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m21_qp_32 _q7
1 2 2 1
Two lines have equationsr = | 3 |+s| =1 Jandr=| 1 |+¢]| -1 |
2 3 -+ 4
{a) Show that the lines are skew. [5]
s21_qp_32_q1i1
With respect to the origin (2, the points A and B have position vectors given by OA = 2i- j and
OB =j-2k.
(a) Show that A = OB and use a scalar product to calculate angle AOB in degrees. [4]
The midpoint of AR is M. The point P on the line through © and M is such that PA : OA =7 : 1.
(b) Find the possible position vectors of P. [6]

w21_qp_33_qg8
D

In the diagram, QABCD is a pyramid with vertex D). The horizontal base (PABC is a square of side
4 units. The edge (D is vertical and QI = 4 units. The unit vectors i, j and k are parallel to OA, OC
and O respectively.

The midpoint of AB is M and the point N on CI is such that DN = 3NC.

{a) Find a vector equation for the line through M and N. [5]

(b) Show that the length of the perpendicular from O to MN is %q’lﬁ [4]
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s22 qp_32_q9

The lines [ and m have vector equations
r=—i+3j+4k+A2i—-j—k) and r=35i+4j+3k+ylai+bj+k)
respectively, where a and b are constants.

(a) Given that [ and m intersect, show that 26 — a = 4. [4]

w22_qp_31_q1i1

In the diagram, @ABCD is a solid figure in which OA = OF = 4 units and QD = 3 units. The edge QD
is vertical, D is parallel to OF and YT = 1 unit. The base, @ARB, is horizontal and angle AQB = 90°.
Unit vectors i, j and k are parallel to A, OB and QD respectively. The midpoint of AB is M and the
point &N on BC is such that CN = 2NB.

(a) Express vectors MD and ON in terms of i, jand k. [4]
(b) Calculate the angle in degrees between the directions of MD and ON. [3]
(c) Show that the length of the perpendicular from M to ON is J% [4]
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w22_qp_33_q9

With respect to the origin (2, the position vectors of the points A, B and C are given by

. 0 . 1 . 4
GAz(S)f Gﬂz(ﬂ) and DC‘=(—3).
2 1 -2

The midpoint of AC is M and the point N lies on BC, between B and C, and is such that BN = 2N C.

{a) Find the position vectors of M and N. [3]

(b) Find a vector equation for the line through M and N. [2]

(c) Find the position vector of the point (J where the line through M and & intersects the line through
Aand B. [4]

s23_qp_33_q9
The lines { and m have equations
I r=ai+3j+bk+ Aici —2j + 4k).
m: r=i+2j+3k+p(2i-3j+k)

Relative to the origin (2, the position vector of the point P is 4i + 7j — 2k.

(a) Given that ! is perpendicular to m and that P lies on [, find the values of the constants a, b and c.
[4]

(b) The perpendicular from P meets line m at (. The point R lies on PQ extended, with
PO:0OR=2:3.

Find the position vector of R. [6]
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Differential Equations

m19_qp_32 g6

The variables x and y satisfy the differential equation

= k 3 _1.
dx > e
where k& is a constant. It 1s given that ¥y = 1 when x = 0, and that v = ye when x = 1. Solve the
differential equation, obtaining an expression for y in terms of x. [7]
s19_qp_31_qg5
(i) Differentiate —— with respect to 8. [2]
sin~ @

(ii} The variables x and 8 satisfy the differential equation
dx 5
X tan Ed—; + cosec” 8 =0,

for0 = 8 < J;J: and x = (0. It is given that x = 4 when 8 = %:r. Solve the differential equation,

obtaining an expression for x in terms of 8. [6]

wi9_qp_31_qg4

The number of insects in a population ¢ weeks after the start of observations is denoted by N. The
population is decreasing at a rate proportional to Ne ™", The variables N and r are treated as

dwv
continuous, and it is given that when ¢ = 0, N = 1000 and a —10.

(i) Show that & and ¢ satisfy the ditferential equation

ﬂ = —0.01 E—“.[]:IN_ [ 1 '|
dr
(ii) Solve the differential equation and find the value of 1 when N = 800. [6]
(ifi) State what happens to the value of N as t becomes large. [1]
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m20_qp_32_g6
The variables x and v satisfy the differential equation
dy 1+4y’
de et

Itis given that y = 0 when x = 1.

(a) Solve the differential equation, obtaining an expression for y in terms of x.

(b) State what happens to the value of y as x tends to infinity.

w20_qp_32_q7
The variables x and ¢ satisfy the differential equation
d:
e X cos? 2x,
dt

fort = 0. Itis given that x = 0 when 1 = 0.

(a) Solve the differential equation and obtain an expression for x in terms of 7.

(b) State what happens to the value of x when ¢ tends to infinity.

MOJZA

(7]
(1]

[7]

[1]
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s21_qp_33_q7
y
A
|
-
-\
a M N
For the curve shown in the diagram, the normal to the curve at the point P with coordinates (x, y)
meets the v-axis at N. The point M is the foot of the perpendicular from P to the x-axis.
The curve is such that for all values of x in the interval 0 £ x < %m the area of triangle PMN is equal
to tan x. B
MN  dv
i) Show that — = —. |
{a) (i) Show tha 3 I [1]
. . . . . 1 2 dv
{ii) Hence show that v and y satisfy the differential equation j}"a = tan.x. [2]
w21_qp_31_q7
{a) Given that v = In{ln x), show that
dy |
= . 1
dr xlnx [

The variables x and ¢ satisfy the differential equation

dx
xlnx+r— =10
dr
It is given that x = e when 1t = 2.

(b) Solve the differential equation obtaining an expression for x in terms of f, simplifying your
ANSWer. [7]

{c) Hence state what happens to the value of x as ¢ tends to infinity. [1]

32



s22 qp_33_¢q8
At time f days after the start of observations, the number of insects in a population is N. The variation
dN 3
in the number of insects is modelled by a differential equation of the form - kN2 cos 0.02t, where

k is a constant and N is a continuous variable. It is given that when ¢ = 0, N = 100.

(a) Solve the differential equation, obtaining a relation between N, k and 1. [5]

(b} Given also that N = 625 when ¢ = 50, find the value of &. [2]

{c) Obtain an expression for N in terms of 7, and find the greatest value of N predicted by this model.
(2]

w22_qp_31_qg8
In a certain chemical reaction the amount. x grams, of a substance is increasing. The differential
equation satisfied by x and #, the time in seconds since the reaction began, is

dx
e
dr

where & is a positive constant. It is given that x = 20 at the start of the reaction.

{a) Solve the differential equation, obtaining a relation between x, ¢ and k. [5]

(b) Given that x = 40 when r = 10}, find the value of k£ and find the value approached by x as ¢ becomes
large. [3]

w22 _qgp_33_qi0

A pgardener is filling an ormamental pool with water, using a hose that delivers 30 litres of water
per minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in
the pool is V litres. The pool has a small leak and loses water at a rate of .01V litres per minute.

dv
The differential equation satisfied by V and r is of the form a a—bV.

(a) Write down the values of the constants a and b. [1]
(b) Solve the differential equation and find the value of r when V = 1000. [6]
m23_qp_32_q9

The variables x and vy satisfy the differential equation
dy _ 5y 2
=g sin” 2x.
sin

It is given that v = 0 when x = 0.

Solve the differential equation and find the value of v when x = % [7]
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s23_qp_31_q7
The variables x and y satisfy the differential equation
co hd}' dtan 2x
s2x— = .
dx  sin® 3y

where 0 £ x < %n. It is given that v = (0 when x = én_

Solve the differential equation to obtain the value of x when y = %m. Give your answer correct to

3 decimal places. [8]

m23_qp_32_q9
The variables x and y satisly the differential equation

dy .
d—i =e" sin” 2x.
It is given that ¥y = 0 when x = (.
Solve the differential equation and find the value of v when x = % [7]

s23_qp_33_¢q8
The wariables x and v satisfy the differential equation
dy v +4
dy  x(v+4)

for x = (. It is given that x = 4 when y = 243,

Solve the differential equation to obtain the value of x when v = 2. [8]
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Complex Numbers

s18_qp_31 _q7
(i) Showing all working and without using a calculator, solve the equation z° + (2y6)z + 8 = 0,
giving yvour answers in the form x + iy, where x and vy are real and exact. [3]
(ii) Sketch an Argand diagram showing the points representing the roots. [1]
(ifi) The points representing the roots are A and B, and (7 is the origin. Find angle AOB. [3]
{iv) Prove that triangle AOB is equilateral. [1]
s18_qp_33 _q9

{a) Find the complex number z satisfying the equation
3z-iz"=1+35i,

where z* denotes the complex conjugate of z. [4]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
which satisfy both the inequalities |z| £ 3 and Im z = 2, where Im z denotes the imaginary part
of z. Calculate the greatest value of arg z for points in this region. Give your answer in radians
correct to 2 decimal places. [5]

mi19_qp_32_q7

(a) Showing all working and without using a calculator, solve the equation
(1+1)z2 = (4+3i)z+5+i=0.

Give your answers in the form x + iy, where x and v are real. [6]

(b) The complex number i is given by
=-1-1i

On a sketch of an Argand diagram show the point representing u. Shade the region whose points

represent complex numbers satisfying the inequalities |z| < [z — 2i| and %Lfc <arg(z —u) < %:‘1’.

(4]

35

MOJZA



s19_qgp_32_g5
Throughout this question the use of a calculator is not permitted.
It is given that the complex number —1 + (4/3)i is a root of the equation
kx' +5x° +10x+4 =0,

where & is a real constant.

(i) Write down another root of the equation. [1]

(ii) Find the value of &k and the third root of the equation. [6]

wi19_qp_31_q10
{a) The complex number u is given by u = =3 — (24/10)i. Showing all necessary working and without

using a calculator, find the square roots of u. Give your answers in the form a + ib, where the
numbers g and b are real and exact. [5]

(b) On a skeich of an Argand diagram shade the region whose points represent complex numbers
z satisfying the inequalities |z -3 —i| = 3, argz = i—n and Imz = 2, where Im z denotes the
imaginary part of the complex number z. [5]

w19 _gp_32 g7
{a) Find the complex number z satisfying the equation
I+ ; -2=10,

where z* denotes the complex conjugate of z. Give your answer in the form x + iy, where x and
v are real. [5]

(b} (i) Onasingle Argand diagram sketch the loci given by the equations |z —2i| =2 and Imz = 3,
where Im =z denotes the imaginary part of z. [2]

{ii) In the first quadrant the two loci intersect at the point P. Find the exact argument of the
complex number represented by P. [2]

m20_qgp_32_q10

(a) The complex numbers v and w satisfy the equations
v+ i =5 and (1+2i)v—w =31

Solve the equations for v and w, giving your answers in the form x + iy, where x and y are real.

(6]
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w20_qp_32_q6
The complex number u is defined by
T+i
= —-:-.
1 -i
(a) Express i in the form x + iy, where x and v are real. [3]

(b) Show on a sketch of an Argand diagram the points A, B and C representing u, 7+1iand | —1i

respectively. [2]
(c) By considering the arguments of 7 + 1 and 1 — i, show that
tan~" [%} = tan~! %} + %‘.n:. [3]
s21_qp_31_g5
(a) Solve the equation z° — 2piz — g = 0, where p and g are real constants. [2]

In an Argand diagram with origin ), the roots of this equation are represented by the distinct points
Aand B.

(b) Given that A and B lie on the imaginary axis, find a relation between p and 4. [2]
(c) Given instead that triangle (AR is equilateral, express g in terms of p. [3]
s21_qp_32_qg5

The complex number u is given by u = 10 — 44/6i.

Find the two square roots of u, giving vour answers in the form a + ik, where @ and b are real and
exact. [5]

w21_qgp_31_qi0
The complex number 1 + 2i is denoted by u. The polynomial 2x* + ax” + 4x + b, where a and b are
real constants, is denoted by p(x). It is given that i is a root of the equation p(x) = 0.

{a) Find the values of a and b. (4]
(b) State a second complex root of this equation. [1]
{c) Find the real factors of p(x). [2]

{d) (i) On a sketch of an Argand diagram, shade the region whose points represent complex
numbers z satisfying the inequalities |z — | < +/5 and arg z < 7"‘11:. [4]

{ii) Find the least value of Im z for points in the shaded region. Give your answer in an exact
form. [1]
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w21_qp_32_q3
{a) Given the complex numbers i = a + ib and w = ¢ + id. where a, b, ¢ and d are real, prove that
(0 +w)* = 0" +w™ [2]

{(b) Solve the equation (z +2 +1i)* + (2 + i)z = 0, giving your answer in the form x + iy where x and

Vv are real. [4]
w21_qp_32_qg5

(a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers =z

satisfying the inequalities [z— 3 - 2i| = 1 and Imz = 2. [4]

(b) Find the greatest value of arg z for points in the shaded region, giving your answer in degrees.

[3]
m22_qp_32_qg2
On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities |z + 2 - 3i|< 2 and argz %TE. [4]
w22_qp_31_qg5

doi Lo
The complex numbers 1 and w are defined by u = 2e*™ and w = 3.

-

. I - . i .
(a) Find —. giving your answer in the form re'”, where r > 0 and —n < @ < . Give the exact values
W

of rand 6. [3]

{b) State the least positive integer n such that both Imw” = 0 and Re w” = 0. [1]
w22_qp_33_qg5

(a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers =z

satisfying the inequalities [z+ 2| = 2 and Imz = 1. [4]

(b} Find the greatest value of arg z for points in the shaded region. [2]
m23_qp_32_qg2

(a) On an Argand diagram, shade the region whose points represent complex numbers z satisfying

the inequalities —ix < arg(z— 1 - 2i) <ix and Rez <3. (3]

(b) Calculate the least value of arg z for points in the region from (a). Give your answer in radians
correct to 3 decimal places. [2]
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s23_qgp_33_qi1

S5a-—2i
The complex number z is defined by z = ; _I . where a is an integer. It is given that argz = —%11:_
+ ¢l
{a) Find the value of a and hence express z in the form x + iv, where x and v are real. [6]

(b) Express 2 in the form rewf where r = 0 and —n = 8 £ n. Give the simplified exact values of

rand &. [3]
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