

AS-MATHEMATICS FORMULA SHEET MECHANICS (M1)

BY TEAM MOJZA

Forces and Equilibrium:

I F=µR

F = force(N)

μ= coefficient of friction

R= normal reaction

Kinematics:

IV = s/t

 $I V^2 = u^2 + 2as$

 $I S = \frac{1}{2} (u + v) t$

 $IS = ut + \frac{1}{2}at^{2}$

 $IS = vt - \frac{1}{2} at^2$

IV = u + at

 $V = final \ velocity \ (ms^{-1})$

U = initial velocity (ms⁻¹)

S = displacement (m)

T = time(s)

 $A = acceleration (ms^{-2})$

I GRADIENT: Y₂-Y₁ / X₂-X₁

Gradient of velocity-time graph=

Acceleration

Gradient of displacement-time graph =

Velocity

Area of velocity-time graph = displacement

Newton's Law of Motion:

$IF = m \times a$

F = force(N)

M = mass(kg)

 $A = acceleration (ms^{-2})$

$IF = \Delta P/t$

F = force(N)

 ΔP = change in momentum (Ns)

T = time taken (s)

Work, Energy and Power:

$IW = F \times D$

W = work(J)

F = force(N)

D = distance travelled in direction of force (m)

$IP = W/\Delta t$

W = work done (J)

 ΔT = time taken (s)

IP = Fxv

F = force(N)

 $V = velocity (ms^{-1})$

$I E = mg\Delta h$

M = mass(kg)

G = gravitational field strength (kgms⁻²)

 ΔH = change in height (m)

Momentum:

$IP = m \times v$

p= momentum (Ns)

M = mass(kg)

 $V = velocity (ms^{-1})$

IP=FxD

F = force(N)

D = distance perpendicular to force from pivot (m)

I Impulse = $m \times \Delta v$

M = mass(kg)

 $\Delta v = \text{change in velocity (ms}^{-1})$

$I F_1D_1 = F_2D_2$

Moment of an arm -

F = force(N)

D = distance (m)