AS MATHS FORMULA SHEET PURE MATHEMATICS I (PI)

BY TEAM MOJZA

Quadratics

-Quadratic Formula: $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Coordinate geometry

-Gradient of a straight line: $\frac{(y 2-y 1)}{(x 2-x 1)}$
-Distance between two points:
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
-Midpoint of two points: $\frac{\left(x_{2}+x_{1}\right)}{2}, \frac{\left(y_{2}+y_{1}\right)}{2}$
-Equations of lines:
$y=m x+c$
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
Y is the y coordinate, X is the x coordinate m is the gradient , C in the y intercept
-Equation of circle:

$$
(x-A)^{2}+(y-B)^{2}=r^{2}
$$

A is the X coordinate of the center of the circle B is the Y coordinate of the center of the circle r is the radius of the circle

Circular Measure

$S=r \theta \quad A=\left(\frac{\theta}{2}\right) \times r^{2}$
S is the arc length
A is area of the sector

Trigonometry

$\frac{\cos \theta}{\sin \theta}=\tan \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$

Series

-Arithmetic Series:
$s=\frac{n}{2}(a+l)$
$S=\frac{n}{2}(2 a+(n-1) d)$
$n=a+(n-1) d$
-Geometric Series:
$\mathbf{n}^{\text {th }}$ term: $\mathrm{ar}^{\mathrm{n}-1}$
a is the first term
r is the common ratio of every two successive terms n is the number of terms

Sum of \mathbf{n} terms:

$\frac{a\left(1-r^{n}\right)}{(1-r)}$ (or) $\frac{a\left(r^{n}-1\right)}{(r-1)}$
a is the first term
r is the common ratio every two consecutive terms

Sum of infinite geometric series:

$\frac{a}{(1-r)}$
a is the first term
r is the common ratio every two successive terms

$$
\begin{aligned}
& \text {-Binomial Series } \\
& (x+y)^{n}=n C_{0} x^{n}+n C_{1} x^{n-1} \cdot y+n C_{2} x^{n-2} \cdot y^{2}+ \\
& \ldots+n C_{n} y^{n}
\end{aligned}
$$

r is the radius of the sector
θ Is the angle of the sector

