

## **AS Chemistry Formulas**

## **Atoms, Molecules and Stoichiometry**

-Moles: Mass
Molar Mass

-Moles:  $\frac{Volume}{24}$ 

-Volume of a gas: Moles X 24

-Moles: concentration X volume

-Relative abundance:  $\frac{Peak\ Height}{Total\ Height} \times 100$ 

-Ar:(mass X relative abundance)/100

-Molecular formula: (empirical formula) X n

where **n:**  $\frac{\textit{Molecular Mass}}{\textit{Mass of Empirical Formula}}$ 

-Percentage composition:

 $\frac{Atomic\ mass \times No.\ of\ molar\ moles}{Molar\ mass\ of\ Compound} \times 100$ 

## **States of Matter**

-Ideal Gas Law: PV = nRT

-Variation of Ideal Gas Law to find Mr:  $\frac{Mass \times RT}{PV}$ 

-Combined gas law:  $\frac{P1V1}{t_1}$ :  $\frac{P2V2}{t_2}$ 

## **Chemical Energetics**

-Heat Capacity formula:

Q=mcΔT Q is heat energy, m is mass, c is specific heat capacity ΔT is change in temperature

-Average bond enthalpy:

 $\Sigma$ Bond enthalpy in reactants-  $\Sigma$ Bond enthalpy in products

**Equilibria** 

**K**<sub>p</sub>: [product]<sup>n</sup>/[reactant]<sup>n</sup> (gases only)

**K<sub>c</sub>:** [product]<sup>n</sup>/[reactant]<sup>n</sup> (liquid and gases only)

Where n = no. of moles in equation

-Mole fraction: Mole of One Gas

Total Mole of Gas

-Partial pressure of a gas: mole fraction
 X total pressure