MOJZA

AS Level

Organic Chemistry

Cheat Sheet

9701

BY TEAM MOJZA

CONTENTS

Types of Reactions	-Pg	02
Organic Reactions List	Pa	03

Types of Reactions

- → Free Radical Substitution Reaction
 - Alkane + Halogens
- → Electrophilic Substitution
 - Alkene + X₂
- → Nucleophilic Substitution
 - $R-X \rightarrow R-OH$
 - $R-X \rightarrow R-CN$
 - $R-X \rightarrow R-NH_2$
 - R-OH + Halogen Acids → R-X
- → Elimination Reactions
 - $R-X \rightarrow Alkene$
 - R-OH → Alkene
- → Nucleophilic Addition
 - R-CO-R` + H-CN → R-C(OH)(CN)-R
- → Oxidation
 - Alkene → Diol (When cold, dilute KMnO₄ is added)
 - Alkene \rightarrow Aldehyde/Ketone/CO₂+H₂O (When hot,concentrated KMnO₄ is added)
 - Primary Alcohols → Aldehyde (When acidified K₂Cr₂O₇ is added + Distillation)
 - Primary Alcohol → Respective Acid (When acidified K₂Cr₂O₇ is added + Reflux)
 - Secondary Alcohol \rightarrow Ketone (When acidified $K_2Cr_2O_7$ is added + Reflux)
 - Aldehyde \rightarrow Acid (When $K_2Cr_2O_7/KMnO_4$ or Fehlings or Tollens reagent is added)

→ Reduction

- Acid → Primary Alcohol (When LiAlH₄ is added)
- Alkenes→ Alkane (When H₂ is added at 200 degrees Celcius with nickel as a catalyst)
- Ketones→ Secondary alcohol (When reducing agent is added)
- Amide→Amines(When reducing agent is added)

→ Hydrolysis

- ullet Esters + Acid as a reagent o Acid + Alcohol
- Esters + Alkali as a reagent→ Salt of carboxylic acid + Alcohol
- Acyl Chlorides + Water→ Carboxylic Acid + HCl
- Amides + Acid as a reagent→ Carboxylic Acid + NH₄⁺¹
- Amides + Alkali as a reagent \rightarrow Salt of carboxylic acid + NH₃
- Nitriles + Acid as a reagent → Carboxylic Acid + NH₄ ⁺¹

Nitriles + Alkali as a reagent →Salt of carboxylic acid + NH₃

Organic Reactions List

- 1. $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
- 2. Organic Compound + O_2 (excess) $\rightarrow CO_2 + H_2O$
- 3. Organic Compound + O_2 (limited) \rightarrow C + CO + H_2O
- 4. $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$
- 5. $C_2H_4 + H_2 \rightarrow C_2H_6$
- 6. $C_2H_4 + H_2O \rightarrow C_2H_5OH$
- 7. $C_2H_4 + HBr \rightarrow C_2H_5Br$
- 8. $C_2H_4 + [O] + H_2O \rightarrow CH_2(OH)CH_2OH$
- 9. $C_2H_4 + [O] \rightarrow CO_2 + H_2O$
- 10. $R-X + NaOH \rightarrow R-OH + NaX$ (Aqueous NaOH)
- 11. R-X + NaOH \rightarrow Alkene + NaX + H₂O (NaOH in ethanol)
- 12. $R-X + KCN \rightarrow R-CN + KX$ (In ethanol)
- 13. $R-X + NH_3 \rightarrow R-NH_2 + HX$ (In ethanol)
- 14. R-CN + H_2O + H^+ \rightarrow RCOOH + NH_4^+
- 15. $R-CN + [H] \rightarrow RCH_2NH_2$
- 16. R-OH + $PCl_5 \rightarrow RCI + POCl_3 + HCI$
- 17. $R-OH + SOCl_2 \rightarrow R-CI + SO_2 + HCI$
- 18. R-OH + PCl₃ \rightarrow RCl + H₃PO₃
- 19. $R-OH + PBr_3 \rightarrow RBr + H_3PO_3$
- 20. R-OH + KBr + $H_2SO_4 \rightarrow R$ -Br + KHSO4 + H_2O
- 21. $R-OH + PI_3 \rightarrow R-I + H_3PO_3$
- 22. R-OH \rightarrow Alkene + H₂O (Dehydration/Elimination)
- 23. R-OH + R`COOH \rightarrow R-O-COR` + H₂O
- 24. Aldehyde + $[O] \rightarrow Carboxylic Acid + H₂O$
- 25. Aldehyde + $[H] \rightarrow Primary Alcohol$
- 26. Ketone + $[H] \rightarrow$ Secondary Alcohol
- 27. Aldehyde + 2,4-DNPH \rightarrow Hydrazone + H₂O
- 28. RCHO + $2[Ag(NH_3)_2]^+$ (Tollens Reagent) + OH⁻ \rightarrow 2Ag +RCO₂⁻ + 4NH₃+ 2H₂O
- 29. RCHO + $2Cu^{+2}$ + OH⁻ $\rightarrow Cu_2O$ + RCO₂⁻ + $3H_2O$
- 30. Aldehyde/Ketone + HCN → Cyanohydrin
- 31. Carboxylic Acid + Active metal \rightarrow Salt + H₂

- 32. Carboxylic Acid + Metal Oxide \rightarrow Salt + H₂O
- 33. Carboxylic Acid + Metal Carbonate \rightarrow Salt + H₂O + CO₂
- 34. Carboxylic Acid + Alkali \rightarrow Salt + H₂O
- 35. Carboxylic Acid + Alcohol \rightarrow Ester + H₂O
- 36. $RCOOH + PCl_5 \rightarrow RCOCI + POCl_3 + HCl$
- 37. $RCOOH + PCl_3 \rightarrow RCOCI + H_3PO_3$
- 38. $RCOOH + SOCl_2 \rightarrow RCOCI + SO_2 + HCI$
- 39. $RCOCI + H_2O \rightarrow RCOOH + HCI$
- 40. RCOOR $+ H_2O + H^+ \rightarrow RCOOH + ROH$
- 41. $RCOOR^+ + NaOH(aq) \rightarrow RCOONa + R-OH$
- 42. $RCO-NH_2 + H_2O + H^+ \rightarrow RCOOH + NH_4^+$
- 43. $RCO-NH_2 + NaOH(aq) \rightarrow RCOONa + NH_3$
- 44. Carboxylic Acid + $[H] \rightarrow Primary Alcohol$
- 45. $HCOOH + [O] \rightarrow CO_2 + H_2O$
- 46. $HOOC-COOH + [O] \rightarrow CO_2 + H_2O$
- 47. RCOCI + R`OH → RCOOR` +HCI
- 48. R-CO-NH₂ (Dehydration) \rightarrow RCN + H₂O
- 49. CH_3 -CO-CH₃ + I_2 (With NaOH) \rightarrow CH₃COONa + CHI₃
- 50. C_2H_5 -CH(OH)-CH₃ + I_2 (With NaOH) \rightarrow CH₃CH₂COONa + CHI₃

A Note from Mojza

This resource for Chemistry(9701) has been prepared by Team Mojza, covering the content for AS Level 2022-24 syllabus. The content of this resource has been prepared with utmost care. We apologise for any issues overlooked; factual, grammatical or otherwise. We hope that you benefit from these and find them useful towards achieving your goals for your Cambridge examinations.

If you find any issues within these notes or have any feedback, please contact us at support@mojza.org.

Acknowledgements

Author:

Miraal Omer

Proofreaders:

Fatima Tanzeen Hania Sheikh Hateem Arham

Designers:

Fasiha Raza

The content of these notes may not be republished or redistributed without permission from Mojza. All diagrams have been designed by Team Mojza except where cited.

^{© 2024} Mojza. All rights reserved.