
MOJZA

O Levels & IGCSE

COMPUTER
SCIENCE NOTES
Paper 2: Programming and
Algorithm
2210 & 0478

BY TEAM MOJZA

All rights reserved
www.mojza.org



MOJZA

CONTENTS

Pg 02 Unit 7 AlgorithmDesign and

Problem-Solving

Pg 11 Unit 8 Pseudocode

Pg 26 Unit 9 Databases

Pg 31 Unit 10 Boolean Logic

1



MOJZA

Unit 7: Algorithmdesign and
Problem-solving

Programdevelopment life cycle

➜ Consists of four main stages

- Analysis

➜ Abstraction: Removal of unnecessary details and identification of the key elements
of the problem
➜ Decomposition: Breaking down a complex problem into smaller, easier-to-solve
parts
➜ Identification of the problem and requirements

- Design

➜ Pseudocode
➜ Flowcharts
➜ Structure diagrams
➜ How the problem is to be solved, what tasks are required for it and how they work
with each other, and the order of those tasks is found out in this stage

- Coding

➜ Program code is written using a programming language
➜ Iterative testing of the separate modules of the program is carried out, ensuring they
work as they are meant to
➜ Most amendments to the code are carried out in this stage

- Testing

➜ The completed program is tested with test data to spot any errors

2



MOJZA

Computer systems

➜ Made up of subsystems, which are made up of further sub-systems, and so on
➜ Made up of software, data, hardware, communications, and people
➜ The division can shown using top-down design
➜ Top-down design is the breaking down of a system into smaller sub-systems, and
those subsystems into further sub-systems, until each sub-system performs a single
action

Decomposition of a problem

➜ A problem can be decomposed by the identification of its component parts
➜ These include the inputs, processes, outputs, and storage required for the solution

- Inputs

➜ The data that is to be entered into the system for processing while it is active

- Processes

➜ The tasks that need to be performed on the data input and and/or the data
previously stored in the system

- Outputs

➜ The data that needs to be displayed or printed for the users of the system
➜ The results of the various processes carried out in the system using the input data
and/or the previously stored data

- Storage

➜ Data that needs to be stored in an appropriate medium in the system so that they
can be used throughout the program as needed

Methods used to design and construct solutions to a problem

➜ Solutions to problems need to be designed using thorough methods, to ensure that
their purpose is clearly understood
➜ Include structure diagram, flowcharts, and pseudocode

3



MOJZA
- Structure diagrams

➜ Hierarchical diagrams that show the decomposition of a system
➜ Display top-down design diagrammatically
➜ Show the solution to a problem in a hierarchical way, dividing it into subsystems and
dividing those subsystems into further sub-systems, until each sub-system performs a
single action

➜ The following is a structure diagram of a part of a satellite navigation system that:
↳ allows the user to enter details for a new destination or select a previously saved

destination
↳ displays directions in the form of a visual map or as a list

4



MOJZA
- Flowcharts

➜ Diagrammatically show the steps required, and the order in which they are to be
carried out to complete a task
➜ The steps, along with the order, are called an algorithm
➜ Have standard flowchart symbols for different processes

Symbol Name Description

Flow line Represents control passing between
connected shapes

Process Represents something being
performed or done

Subroutine Represents a subroutine call that
relates to another non-linked flowchart

Input/Output Represents data being input/output
into or out of a flowchart

Decision Represents a decision (Yes/No or
True/False) that results in two different
possible outcomes

Terminator Represents the ‘Start’ or ‘Stop’ of a
program

5



MOJZA
Standard methods of solution

➜ Linear search
➜ Bubble sort
➜ Totalling
➜ Counting
➜ Finding maximum, minimum and average values

- Linear search

➜ Used to search for a certain value/variable, etc.
➜ Checks all the elements of the data structure being searched

Example
OUTPUT “Please enter the name to find”
INPUT Name
Found ← FALSE
Counter ← 1
REPEAT

IF Name = StudentName[Counter]
THEN

Found ← TRUE
ELSE

Counter ← Counter + 1
ENDIF

UNTIL Found OR Counter > ClassSize
IF Found
THEN

OUTPUT Name, “ found at position ”, Counter, “ in the list”
ELSE

OUTPUT “Name not found”
ENDIF
//pseudocode to find the name stored in Name

6



MOJZA
- Bubble sort

➜ Used to arrange elements in a data structure in ascending or descending order
➜ Always has a variable to temporarily store data in between swaps
➜ Compares each element with the next consecutive one, and swaps if needed

Example:
DECLARE StudentAge : ARRAY [1:10] OF INTEGER
Last ← 10
FOR Counter ← 1 TO 10

OUTPUT “Enter student’s age”
INPUT Age
StudentAge[Counter] ← Age

NEXT Counter
REPEAT

Swap ← FALSE
FOR Counter ← 1 TO Last - 1

IF StudentAge[Counter] > StudentAge[Counter + 1]
THEN

Temp ← StudentAge[Counter]
StudentAge[Counter] ← StudentAge[Counter +1]
StudentAge[Counter + 1] ← Temp

ENDIF
NEXT Counter
Last ← Last - 1

UNTIL (NOT Swap) OR Last = 1
//pseudocode to arrange the students’ ages in StudentAge in
//ascending order

- Totalling

➜ The process of keeping a running total of values in a program

Examples:
TotalCost ← TotalCost + FurnitureCost
TotalBaskets ← TotalBaskets + BananaBaskets

7



MOJZA

- Counting

➜ Number of times an action is performed in a program

Examples:
Counter ← Counter + 1
NumberInStock ← NumberInStock - 1

- Maximum, minimum, and average

➜ Maximum value is found out by comparing all the values input in the program and
identifying the largest one
➜ Minimum value is found by comparing all the values input in a program and
identifying the smallest one
➜ Average (mean) value is found by totalling all the values, and dividing that total with
the number of values added

Validation

➜ The checking that the data entered is reasonable/sensible
➜ There are several kinds of validation checks

Validation
check

Function (checks if:) Example

Range The data is within a
set range

REPEAT
OUTPUT “Enter your marks”
INPUT Marks

UNTIL Marks > -1 AND Marks < 101

Length The data is either an
exact number of
characters, or within a
range of number of
characters

REPEAT
OUTPUT “Enter your password”
INPUT Password

UNTIL LENGTH(Password) >= 8

Type The data conforms to
the required data type

REPEAT
OUTPUT “Enter your age”
INPUT Age

UNTIL DIV(Age, 1) = Age

8



MOJZA

//This may not be needed as the data type
//of Age can be declared INTEGER

Presence Data has been
entered

REPEAT
OUTPUT “Enter your name”
INPUT Name

UNTIL Name <> “ ”

Format The data conforms to
a specific format

REPEAT
OUTPUT “Enter your device code”
INPUT DeviceCode

UNTIL SUBSTRING(DeviceCode, 1, 3) = “XYX”
AND LENGTH(DeviceCode) = 6

Check digit The final digit entered
in a code is correct

REPEAT
OUTPUT “Enter your device number”
INPUT DeviceNumber
OUTPUT “Enter your device code”
INPUT DeviceCode

UNTIL SUBSTRING(DeviceCode, 6, 1) = (2 *
DeviceNumber)
//DeviceCode contains a six-digit number

Verification

➜ The checking if data has been accurately copied from one medium to another
➜ Does not check for any ranges, boundaries, etc.
➜ Only checks if the data is identical to the original source

Verification
check

Function Example

Double entry Requires data to be
entered twice so that
both entries can be
compared to confirm
that they are the same

REPEAT
OUTPUT “Enter your password”
INPUT Password1
OUTPUT “Enter your password again”
INPUT Password2

UNTIL Password1 = Password2

Visual Manual check done by
the user to see if the
data entered is correct

Data is displayed on the screen and user is asked to
confirm their accuracy

9



MOJZA

Test Data

➜ Data that has been specifically identified for testing a program
➜ Used to work through a program to find any errors and ensure that it is working like it
is meant to
Normal test data: Data that will be accepted by the program
Abnormal/Erroneous test data: Data that will be rejected by the program
Boundary test data: The largest/smallest accepted values, and their corresponding
largest/smallest rejected values
Extreme data: The largest and smallest accepted values

10



MOJZA

UNIT 8: Pseudocode
(NOTE: meta-variables, i.e: symbols in the pseudocode that should be substituted with
other symbols, are enclosed in angled brackets <>)
(NOTE: All the examples are in PSEUDOCODE. None of the programming languages
are used in these notes.)

- Variable declaration

Format DECLARE <identifier> : <data type>

Examples:
DECLARE MyName : STRING
DECLARE Flag : BOOLEAN

- Constant declaration

➜ It is recommended to use constants if it makes the program more readable, and
easier to update if the value of the constant changes
➜ Only literals must be used as the value of a constant; a variable, another constant, or
an expression must never be assigned to a constant

Format CONSTANT <identifier> ← <value>

Example:
CONSTANT StudentNo ← 30

CONSTANT Message ← “You have completed this level”

11



MOJZA
- Identifiers

➜ Names given to variables, constants, procedures, data structures, and functions
➜ Must be meaningful, and not arbitrary
➜ Are not case sensitive; for example, StudentNumber and Studentnumber must
not be treated as different variables
➜ Keywords should never be used as identifier names, like Repeat or Procedure

➜ Should never start with a number e.g: 4Digit
➜ Should not include accented letters and other characters, including the underscore
( _ )
➜ Can only contain uppercase (A-Z) and lowercase (a-z) alphabets, and the digits 0-9
➜ Must start with a capital letter

Data types

Keywords Type of data Literals (examples) Notes

INTEGER A whole number 4, 10, 69 Written normally, like in the
denary system

REAL A number capable
of containing a
fractional part

4.0, 10.8, 69.69 Always written with at least
one digit on either side of the
decimal point, zero being
added if required

BOOLEAN The logical values
TRUE and FALSE

TRUE, FALSE ____

CHAR A single character ‘X’, ‘M’ Enclosed in single quotes ‘’

STRING A sequence of zero
or more characters

“Hello, how are you?”
“ ” (this is an empty string)

Enclosed in double quotes “”
Can contain no characters

- Sequence

➜ The order in which statements in a program are executed
➜ Sequence is very important, as an incorrect order can lead to errors

- Selection

➜ Performed when different actions need to be performed based on the values entered
into the algorithm
➜ There are two types of selection statements:
↳ IF statements
↳ CASE statements

➜ Also called conditional statements

12



MOJZA
- IF statements

➜ IF…THEN…ELSE…ENDIF

➜ THEN path is followed if the set condition evaluates to TRUE
➜ ELSE path is followed if the set condition evaluates to FALSE
➜ May have more than two conditions
➜ May or may not have an ELSE clause

Format Example

Without ELSE
clause

IF <condition>
THEN

<statements>
ENDIF

IF Number < 0
THEN

OUTPUT “It is a negative
number”
ENDIF

With ELSE
clause

IF <condition>
THEN

<statements>
ELSE

<statements>
ENDIF

IF Number < 0
THEN

OUTPUT “It is a negative
number”
ELSE

OUTPUT “It is a positive
number”
ENDIF

Nested IF
statements

IF <condition>
THEN

<statements>
ELSE
IF <condition>
THEN

<statements>
ELSE

<statements>
…

ENDIF
ENDIF
(Note that there can be
more than one nested IF
statements)

IF ChallengerScore > ChampionScore
THEN

IF ChallengerScore >
HighestScore

THEN
OUTPUT ChallengerName, " is

champion and highest scorer"
ELSE
OUTPUT Player1Name, " is the

new champion"
ENDIF

ELSE
OUTPUT ChampionName, " is still

the champion"
IF ChampionScore > HighestScore
THEN
OUTPUT ChampionName, " is

also the highest scorer"
ENDIF

ENDIF

13



MOJZA

- CASE statements

➜ CASE OF…OTHERWISE…ENDCASE
➜ Allow one of the several branches of the code to be executed, depending on the
value of a variable
➜ OTHERWISE is used as the last case as the path to be followed if all preceding cases
evaluate to FALSE

Format Example

CASE OF <identifier>
<case 1> : <statements>
<case 2> : <statements>
<case 3> : <statements>
…
OTHERWISE <statements>

ENDCASE

(Note that a CASE statement can
have any number of cases)

CASE OF Week
1 : OUTPUT “Monday”
2 : OUTPUT “Tuesday”
3 : OUTPUT “Wednesday”
4 : OUTPUT “Thursday”
5 : OUTPUT “Friday”
6 : OUTPUT “Saturday”
7 : OUTPUT “Sunday”
OTHERWISE OUTPUT “Invalid

input”
ENDCASE

- Iteration

➜When part of the code needs to be repeated either a set number of times or until a
set condition evaluates to TRUE or FALSE
➜ There are three types of iteration loops
➜ count-controlled loops
➜ pre-condition loops
➜ post-condition loops

14



MOJZA
- Count-controlled loops

➜ FOR…TO…NEXT…

➜ Used when there is a known, set number of repetitions
➜ More efficient than the other loops as the counter variable does not need to be
managed/the counter variable increments by itself

Format Example

When the
counter
variable only
needs to be
incremented by
one

FOR <identifier> ← <value1>
TO <value2>

<statements>
NEXT <identifier>

FOR Counter ← 1 TO 10
OUTPUT “***”

NEXT Counter
//this loop prints three *’s
//each on ten lines

When the
counter
variable needs
to be
incremented by
a specific
number

FOR <identifier> ← <value1>
TO <value2> STEP <increment>

<statements>
NEXT <identifier>

FOR Counter ← 2 TO 100 STEP
2

OUTPUT Counter
NEXT Counter
//This loop outputs all even
//numbers between 1 and 100
//inclusive

- Pre-condition loops

➜ WHILE…DO…ENDWHILE

➜ Used when there is no known number of repetitions
➜ Tests the condition prior to the execution of the statements for each repetition
➜ If it evaluates as TRUE, the statements are executed; otherwise, the loop is
terminated
➜ May not be executed even once if the condition evaluates as FALSE when it is tested
for the first time
➜ The condition must be an expression that evaluates to a Boolean

Format Example

WHILE <identifier> DO
<statements>

ENDWHILE

WHILE Number <> 0 DO
Total ← Total + Number

ENDWHILE
//This loop totals all the numbers input, as long
//as they are not zero

15



MOJZA

- Post-condition loops

➜ REPEAT…UNTIL

➜ Used when there is no known number of repetitions
➜ Tests the condition after the execution of the statements for each repetition
➜ If the condition is evaluated as FALSE, the statements are executed for the next
repetition; otherwise, the loop is terminated
➜ Is always repeated at least once

Format Example

REPEAT
<statements>

UNTIL

REPEAT
INPUT Number

UNTIL Number < 0 OR Number >100
//This loop repeats until the number input is smaller
//than 0 or larger than 100

- String handling

➜ Length : Finding the number of characters in a string
➜ Substring : Extracting a part of a string
➜ Uppercase : Converting all the letters in the string to uppercase
➜ Lowercase : Converting all the letters in the string to lowercase
➜ The first character of a string can be in position one or zero; however, it is generally
one

Format Example Notes

Length LENGTH (“<string>”)
OR
LENGTH (<identifier>)

LENGTH (“Mojza”)
OR
Name ← “Mojza”
LENGTH (Name)

A string in double
quotes or a
variable with data
type string can be
used

Substring SUBSTRING (“<string>”,
<start>, <length>)
OR
SUBSTRING (<identifier>,
<start>, <length>)

SUBSTRING(“Mojza”, 1,
3)
OR
SUBSTRING (Name,1, 3)
(This would extract
‘Moj’)

The first
parameter can be
a string in double
quotes or a
variable with data
type string

16



MOJZA

The second
parameter is the
position of the
start character
The third
parameter is the
length of the
substring

Uppercase UCASE (“<string>”)
OR
UCASE (<identifier>)

UCASE (“Mojza”)
OR
UCASE (Name)
(This would return
“MOJZA”)

A string in double
quotes, char in
single quotes or a
variable with data
type string or char
can be used

Lowercase LCASE (“<string>”)
OR
LCASE (<identifier>)

LCASE (“Mojza”)
OR
LCASE (Name)
(This would return
‘mojza’)

A string in double
quotes, char in
single quotes, or a
variable with data
type string or char
can be used

- Arithmetic operators

Operator Function

+ Add

- Subtract

* Multiply

/ Divide

^ Raise to the power of

( ) Group

MOD Give the remainder of a division

DIV Give the quotient of a division

17



MOJZA
- Logical operators

Operator Comparison

> Greater than

< Lesser than

>= Greater than or equal to

<= Lesser than or equal to

<> Not equal to

= Equal to

- Boolean operators

Operator Meaning

AND Both

NOT Not

OR Either

- Procedures

➜ A standard subroutine that does not return a value
➜ Can have up to two parameters in our syllabus
➜ A parameter is a value sent to the subroutine
➜ The variables declared and used within it are local variables; their scope covers only
the procedure
➜ Value is not returned

- Procedures without parameters:

Format

PROCEDURE <identifier>
<statements>

ENDPROCEDURE

CALL <identifier>
//calling the procedure

18



MOJZA

Example

PROCEDURE Welcome
OUTPUT “Welcome back to the game, player!”
OUTPUT “Click SKIP to skip the tutorial”

ENDPROCEDURE

CALL Welcome

- Procedures with parameters:

Format

PROCEDURE <identifier>(<param1> : <data type>, <param2> : <data
type>...)

<statements>
ENDPROCEDURE

CALL <identifier> (Value1, Value2,...)
//calling the procedure

Example

PROCEDURE Welcome (Name : STRING, Score : INTEGER)
OUTPUT “Welcome back, ”,Name,“!”
OUTPUT “Your current score is: ”, Score

ENDPROCEDURE

CALL Welcome (“EvilDestroyer26”, 42000)

- Functions

➜ A standard subroutine that always returns a value
➜ Can have up to two parameters in our syllabus
➜ The variables declared and used within it are local variables; their scope covers only
the function
➜ Since functions return a value when they are called; a function call is not a complete
programming statement
➜ It is called with an expression

19



MOJZA
- Functions without parameters:

Format

FUNCTION <identifier> RETURNS <data type>
<statements>

ENDFUNCTION

<expression> <identifier>
//calling the function

Example

FUNCTION One RETURNS INTEGER
One ← 1
RETURN One

ENDFUNCTION

OUTPUT One()
//calling the function

- Functions with parameters:

Format

FUNCTION <identifier> (<param1> : <data type>, <param2> : <data
type>...) RETURNS <data type>

<statements>
ENDFUNCTION

<expression> <identifier> (param1, param2)
//calling the function

Example

FUNCTION Average (Totalmark : INTEGER, NoOfSubs : INTEGER) RETURNS
REAL

RETURN TotalMark/NoOfSubs
ENDFUNCTION

OUTPUT “The average mark is ”, Average (120, 8)

20



MOJZA
- Local and global variables

➜ Local variables are variables that are declared for use in a specific part of a program
➜ Their scope is restricted to that part of the program
➜ Examples of local variables include those which have been declared in a procedure
and/or function
➜ Global variables are variables that are declared for use all over a program
➜ Their scope is not restricted to any specific part of the program

- Library routines

➜ Standard subroutines that are available for immediate use
➜ Some examples of library routines are MOD, DIV, ROUND, and RANDOM
➜ Identifiers are of integer data type in MOD and DIV

Library
routine

Format Example

DIV DIV(<identifier1>,<identifier2>)

Returns the quotient from the result of the
division of identifier1 by identifier2

DIV(16, 5)
//Returns 3
DIV(20, 3)
//Returns 6

MOD MOD(<identifier1>,<identifier2>)

Returns the remainder from the result of the
division of identifier 1 by identifier2

MOD(16, 5)
//Returns 1
MOD(20, 3)
//Returns 2

ROUND ROUND(<identifier, <places>)

Rounds the identifier to <places> number of
decimal places

ROUND(3.1415, 2)
//Returns 3.14
ROUND(6.98743, 0)
//Returns 7

RANDOM RANDOM()

Returns a number between 0 and 1
inclusive

RANDOM()
//Can return 0.11
RANDOM() * 8
//Can return 4.69;
//returns a number
//between 0 and 8
//inclusive

21



MOJZA

- Comments

➜ Are important for making program code more understandable
➜ Normally, comments are on a separate line before, and at the same level of
indentation as, the code they refer to
➜ Occasionally, however, a short comment that refers to a single line may be at the end
of the line to which it refers
➜ In pseudocode, comments are preceded by two forward slashes //
➜ The comment continues until the end of the line
➜ For multi-line comments, each line is preceded by //

Example:
// This procedure swaps
// values of X and Y
PROCEDURE SWAP (X : INTEGER, Y : INTEGER)

Temp ← X // temporarily store X
X ← Y
Y ← Temp

ENDPROCEDURE

Arrays

➜ Fixed-length structures of elements of the same data types
➜ The elements are accessible by consecutive index numbers
➜ The lower bound (i.e: the index of the first element) can be one or zero
➜ However, it is generally one
➜ The upper bound (i.e: the index of the last element) of the array can be any integer

22



MOJZA
- 1-D arrays
- Declaration:

Format
DECLARE <identifier> : ARRAY [<l>:<u>] OF <data type>

l is the lower bound of the array and u is its upper bound

Example
DECLARE Name : ARRAY [1:10] OF STRING

- Input/Output values:

Input
Name [2] ← “Bruce Wayne”

Output
OUTPUT Name[2]

- Initialisation/assignment of values:

FOR Counter ← 1 TO 10
Name[Counter] ← “”

NEXT Counter

- 2-D arrays
- Declaration:

Format
DECLARE <identifier> : ARRAY [<l1>:<u1>, <l2>:<u2>] OF <data
type>

l1 is the lower bound of the number of rows in the array, and u1 is its upper bound
l2 is the lower bound of the number of columns in the array, and u2 is its upper
bound

Example
DECLARE StudentMark : ARRAY [1:ClassSize, 1:SubjectNo] OF REAL

23



MOJZA

- Input/Output values:

Input
StudentMark [3,5] ← 45.0

Output
OUTPUT StudentMark [3,5]

- Initialisation/assignment of values:

FOR RowCounter ← 1 TO ClassSize
FOR ColumnCounter ← 1 TO SubjectNo

StudentMark [RowCounter : ColumnCounter] ← 0.00
NEXT ColumnCounter

NEXT RowCounter

Storing data in a file

➜ Data is stored in files in programs for multiple reasons
➜ Data stored in files is not lost when the computer is switched off/it is stored
permanently
➜ It can be used by more than one program or reused when a program is run again
➜ It can be backed up or archived

File Handling

➜ Before reading from or writing to a file, explicitly opening it and stating the mode of
operation is a good practice
➜ There are two modes of operation:

↳ READ : for data to be read from a file
↳WRITE : for data to be written to a file

➜ A file can only be opened in one mode at a time

24



MOJZA
READ

Format
OPENFILE <File identifier> FOR READ
READFILE <File identifier>, <Variable>
CLOSEFILE <File identifier>

Example
OPENFILE MyFile.txt FOR READ
READFILE MyFile.txt, LineOfText
CLOSEFILE MyFile.txt

WRITE

Format
OPENFILE <File identifier> FOR WRITE
WRITEFILE <File identifier>, <variable>
CLOSEFILE <File identifier>

Example
OPENFILE MyFile.txt FOR WRITE
WRITEFILE MyFile.txt, LineOfText
CLOSEFILE MyFile.txt

25



MOJZA

Unit 9: Databases
Databases:

➜ A database is a structured collection of data that allows people to extract information
in a way that meets their needs.
➜ Data can include text, images, numbers.
➜ Single-table database contains only one table

➜ Can store information about people, products, events, timings and more

➜ Data is stored in tables, which further consists of records.
➜ Records further consist of fields. Number of records can vary as data is entered or
deleted.
➜ Number of fields is fixed
➜ Records are rows
➜ Fields are columns

TABLE

Record 1 Field 1 Field 2 Field 3 Field 4 Field 5

Record 2 Field 1 Field 2 Field 3 Field 4 Field 5

Row Record 3 Field 1 Field 2 Field 3 Field 4 Field 5

Record 4 Field 1 Field 2 Field 3 Field 4 Field 5

Record 5 Field 1 Field 2 Field 3 Field 4 Field 5

Column

➜ The table has a fixed name, such as TICKETS (this table is for bus tickets)
➜ Each record will be different with fields
➜ Each field will have different data such as FirstName, LastName, TicketNo, BusNo,
and more. There will be no spaces in between

26



MOJZA
➜ Example of a table:

TICKETS

TicketNo FirstName LastName BusNo Price Destination

TicketNo #1 FirstName #1 LastName #1 BusNo #1 Price#1 Destination #1

TicketNo #2 FirstName #2 LastName #2 BusNo #2 Price#2 Destination #2

TicketNo #3 FirstName #3 LastName #3 BusNo #3 Price#3 Destination #3

TicketNo #4 FirstName #4 LastName #4 BusNo #4 Price#4 Destination #4

TicketNo #5 FirstName #5 LastName #5 BusNo #5 Price#5 Destination #5

➜ Databases will also use validation checks when data is being entered
➜ Validation checks of presence check, range check, type check, length check can be
done

➜ Each field will have a specific data type and will only accept the data given in that
specific data type
➜ There are 6 basic data types used in databases:

Data type Used for

Alphanumeric / text A number of characters/a mix of alphabets and numbers

Character A single character

Boolean TRUE or FALSE / 1 or 0 / YES or NO (for two options)

Integer A whole number

Real A decimal number

Date/time Date and/or time

➜ To identify a specific item, person or etc., a unique field is required
➜ Unique here means no repetition of data
➜ The field that is unique is called a Primary Key
➜ In the database table, TICKETS, the primary key can be the TicketNo field, as it has
no repetition of data and will be unique

27



MOJZA

TICKETS

TicketNo FirstName LastName BusNo Price Destination

BS405 Lara Lee BS12 20.50 New York

QS564 James Benjamin QS11 40.00 Las Vegas

RT567 Louis Martin RT10 32.99 Queens

BS506 James Lee BS12 20.50 New York

QT234 Walter White QT09 15.50 Florida

SQL

➜ SQL stands for Standard Query Language
➜ It is for writing scripts to obtain useful information from a database and display it

➜ SELECT → selects the fields that information needs to be displayed from
➜ SELECT * → means that all fields are to be displayed
➜ FROM → specifies the table in which that specific field is present
➜ WHERE → selects all records with specific condition or data type
➜ ORDER BY → displays data either in ascending or descending order
➜ SUM → takes the sum of a specific field, if the field is of real or integer data type
➜ COUNT → counts how many times the record and field contains the data according
to the conditions given

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

28



MOJZA

BETWEEN Between a range of two values

LIKE Search for a pattern

IN Specify multiple values

AND Specify multiple conditions where all conditions must be true

OR Specify multiple conditions where one or more conditions must be true

NOT Specify a condition that could be false

➜ An SQL command starts with the SELECT function
➜ This is followed by the FROM function
➜ The script then has the commands needed to obtain the information
➜ The last command of the script is ended with a semicolon

Example 1:

The following SQL query displays the first name of all people going to New York
or Florida in alphabetical order, their last names, and their ticket number from
the table TICKETS.

SELECT FirstName, LastName, TicketNo
FROM TICKETS
WHERE Destination = ‘New York’ OR ‘Florida’
ORDER BY FirstName;

This returns:

James Lee BS506

Lara Lee BS405

Walter White QT234

Note that the order in which the script has asked for the information (in this case, first
name, last name, and then ticket number) is very important, and so, it must be
displayed according to it

29



MOJZA
Example 2:

The following SQL query displays the prices of tickets, in descending order, for
buses that are either going to New York, Queens or Las Vegas, their bus
numbers, and their respective destinations.

SELECT Price, BusNo, Destination
FROM TICKETS
WHERE Destination = ‘New York’ OR ‘Queens’ OR ‘Las Vegas’
ORDER BY Price DESC;

This returns:

40.00 QS11 Las Vegas

32.99 RT10 Queens

20.50 BS12 New York

20.50 BS12 New York

30



MOJZA

Unit 10: Boolean Logic

➜ There are 6 different logic gates given in 2023, 2024 and 2025 syllabus:

Truth Tables:

➜ Used to trace the output from a logic gate or circuit
➜ Each logic gate is currently restricted to two inputs (except NOT, which has only
one)
➜ Each input will give a different output, based on the logic gate

31



MOJZA

Logic gates:

1) NOT gate

➜ The output is the opposite of the input
➜ X = NOT A (logic notation)

Input Output

0 1

1 0

2) AND gate
➜ Output is 1 when BOTH inputs are 1
➜ X = A AND B (logic notation)

Input A Input B Output X

0 0 0

0 1 0

1 0 0

1 1 1

3) OR gate

➜ When either or both input/s is 1, the output
will be 1
➜ X = A OR B

Input A Input B Output X

0 0 0

0 1 1

1 0 1

1 1 1

32



MOJZA

4) NAND gate
➜ Opposite of AND gate
➜ Output will be 1 when both inputs are NOT
1
➜ X = A NAND B

Input A Input B Output X

0 0 1

0 1 1

1 0 1

1 1 0

5) NOR gate

➜ Opposite of OR gate
➜ Output will be 1 when 1 is NOT an input
➜ X = A NOR B

Input A Input B Output X

0 0 1

0 1 0

1 0 0

1 1 0

6) XOR (EOR) gate
➜ Output is 1 when both inputs are NOT the
same
➜ X = A XOR B

Input A Input B Output X

0 0 0

0 1 1

1 0 1

1 1 0

33



MOJZA

A truth table with three inputs A, B AND C looks like this

:

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Make a logic circuit from:

- A problem statement
➜ Form a logic expression from the problem statement
➜ Draw the logic circuit

34



MOJZA
Example:
A gas fire has a safety circuit made up of logic gates. It generates an alarm (X = 1) in
response to certain conditions.

Input Description Binary value Condition

G Gas pressure 0 Gas pressure is correct

1 Gas pressure is too high

C Carbon monoxide level 0 Carbon monoxide level is correct

1 Carbon monoxide level is too high

L Gas leak detection 0 No gas leak is detected

1 Gas leak is detected

The output X = 1 is generated under the following conditions:

Gas pressure is correct AND carbon monoxide level is too high
OR

carbon monoxide level is correct AND gas leak is detected

Solution:

X is 1 if : (NOT G AND C) OR (C AND L)

35



MOJZA

- A logic expression:
➜ Identify the innermost pair of brackets, and work your way out of it to draw the logic
circuit properly

Example:

((A AND B) NOR (NOT A)) AND (B NAND C)

Solution:

- A truth table:
➜ Identify the rows where the output is 1
➜ Form a logic expression
➜ Draw the logic circuit

36



MOJZA
Example:

A B C X

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Solution:
➜ Identify the rows where the output is 1
➜ Write each row’s expression:
➜ Row 3: (NOT A AND B) AND (NOT C)
➜ Row 8: (A AND B) AND C

➜ Now, form a full logic expression by connecting each part with OR
➜ Add brackets as required
➜ ((NOT A AND B) AND (NOT C)) OR ((A AND B) AND C)

37



MOJZA

Complete a truth table from:
- A problem statement
➜ Make the logic expression for the problem statement
➜ Make a truth table with three inputs and complete it

Example:
A gas fire has a safety circuit made up of logic gates. It generates an alarm (X = 1) in
response to certain conditions.

Input Description Binary value Condition

G Gas pressure 0 Gas pressure is correct

1 Gas pressure is too high

C Carbon monoxide level 0 Carbon monoxide level is correct

1 Carbon monoxide level is too high

L Gas leak detection 0 No gas leak is detected

1 Gas leak is detected

The output X = 1 is generated under the following conditions:

Gas pressure is correct AND carbon monoxide level is too high
OR

carbon monoxide level is correct AND gas leak is detected

38



MOJZA
Solution:
X is 1 if : (NOT G AND C) OR (C AND L)

G C L
Working Space

X
(Q OR R)NOT G (P) P AND C

(Q)
C AND L

(R)

0 0 0 1 0 0 0

0 0 1 1 0 0 0

0 1 0 1 1 0 1

0 1 1 1 1 1 1

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

You must show your working in the provided working space, and you can name each
column an alphabet (like ‘P AND C’ was named ‘Q’ above) for your ease.

- A logic expression:
➜ Make the logic expression for the problem statement
➜ Make a truth table with three inputs and complete it

Example:
((A AND B) NOR (NOT A)) AND (B NAND C)

39



MOJZA
Solution:

A B C
Working Space

X (F AND
G)A AND B

(D)
NOT A
(E)

D NOR E
(F)

B NAND
C (G)

0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0

0 1 0 0 1 0 1 0

0 1 1 0 1 0 0 0

1 0 0 0 0 1 1 1

1 0 1 0 0 1 1 1

1 1 0 1 0 0 1 0

1 1 1 1 0 0 0 0

- A logic circuit:
➜ In the working space, name each part of the circuit with an alphabet for your ease
➜ Make the truth table and complete it

Example:

40



MOJZA

Solution:

A B C
Working Space

X (F AND
G)A AND B

(D)
NOT A
(E)

D NOR E
(F)

B NAND
C (G)

0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0

0 1 0 0 1 0 1 0

0 1 1 0 1 0 0 0

1 0 0 0 0 1 1 1

1 0 1 0 0 1 1 1

1 1 0 1 0 0 1 0

1 1 1 1 0 0 0 0

Write a logic expression from:

- A problem statement
➜ Identify the conditions
➜ Write their logical equivalents

41



MOJZA
Example:
A gas fire has a safety circuit made up of logic gates. It generates an alarm (X = 1) in
response to certain conditions.

Input Description Binary value Condition

G Gas pressure 0 Gas pressure is correct

1 Gas pressure is too high

C Carbon monoxide level 0 Carbon monoxide level is correct

1 Carbon monoxide level is too high

L Gas leak detection 0 No gas leak is detected

1 Gas leak is detected

The output X = 1 is generated under the following conditions:

Gas pressure is correct AND carbon monoxide level is too high
OR

carbon monoxide level is correct AND gas leak is detected

Solution:
➜ Gas pressure is correct: NOT G (because G = 0)
Carbon monoxide level is too high : C (because C = 1)

➜ Combine these two with AND, adding brackets as required
(NOT G) AND C

➜ Carbon monoxide level is correct: NOT C (because C = 0)
➜ Gas leak is detected: L (because L = 1)

➜ Combine these two with AND, adding brackets as required
(NOT C) AND L

➜ Finally, combine (NOT G) AND C and (NOT C) AND L with OR
((NOT G) AND C) OR ((NOT C) AND L)

42



MOJZA

- A logic circuit:
➜ Separate the logic circuit into each of its sections, going from left to right
➜ Combine them, using brackets as needed, and form the logic expression

Example:

Solution:
➜ The first two sections are:
A NOR B
B AND C

➜ The output of the first section is input to a NOT gate
NOT (A AND B)

➜ Connect NOT (A AND B) and B AND C using an OR gate
NOT (A AND B) OR B AND C

➜ Add brackets for accuracy
(NOT (A AND B)) OR (B AND C)

43



MOJZA
- A truth table:
➜ Identify the rows which have 1 as an output
➜ Write their logic expressions
➜ Combine with OR

Example:

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Solution:
➜ Rows with 1 as an output are highlighted

➜ Row 4:
((NOT A) AND B) AND C

➜ Row 6:
(A AND (NOT B)) AND C

➜ Row 8:
(A AND B) AND C

➜ Combine all three with OR, adding brackets as required
(((NOT A) AND B) AND C) OR ((A AND (NOT B)) AND C) OR ((A AND B) AND C)

44



MOJZA

A Note from Mojza
These notes for Computer Science
(2210/0478) have been prepared by
Team Mojza, covering the content for
GCE O levels and IGCSE 2023-25
syllabus. The content of these notes
has been prepared with utmost care.
We apologise for any issues
overlooked; factual, grammatical or
otherwise. We hope that you benefit
from these and find them useful
towards achieving your goals for your
Cambridge examinations.

If you find any issues within these
notes or have any feedback, please
contact us at support@mojza.org.

Acknowledgements

Authors:
Zoella Ahmad
Fasiha Raza

Proof-readers:
Hadiya Farrukh
Hasan Nawaz

Designers:
Fasiha Raza

© 2023 Mojza. All rights reserved.
The content of these notes may not be republished or redistributed without permission from Mojza.

45


